Why choose Cambridge?

Cambridge Assessment International Education prepares school students for life, helping them develop an informed curiosity and a lasting passion for learning. We are part of the University of Cambridge.

Our international qualifications are recognised by the world’s best universities and employers, giving students a wide range of options in their education and career. As a not-for-profit organisation, we devote our resources to delivering high-quality educational programmes that can unlock learners' potential.

Our programmes and qualifications set the global standard for international education. They are created by subject experts, rooted in academic rigour and reflect the latest educational research. They provide a strong platform for learners to progress from one stage to the next, and are well supported by teaching and learning resources.

Our mission is to provide educational benefit through provision of international programmes and qualifications for school education and to be the world leader in this field. Together with schools, we develop Cambridge learners who are confident, responsible, reflective, innovative and engaged – equipped for success in the modern world.

Every year, nearly a million Cambridge students from 10 000 schools in 160 countries prepare for their future with an international education from Cambridge International.

Quality management

Our systems for managing the provision of international qualifications and education programmes for students aged 5 to 19 are certified as meeting the internationally recognised standard for quality management, ISO 9001:2008. Learn more at www.cambridgeinternational.org/ISO9001
# Contents

<table>
<thead>
<tr>
<th>Stage</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 7</td>
<td>5</td>
</tr>
<tr>
<td>Scientific enquiry</td>
<td>5</td>
</tr>
<tr>
<td>Biology</td>
<td>5</td>
</tr>
<tr>
<td>Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>Physics</td>
<td>7</td>
</tr>
<tr>
<td>Stage 8</td>
<td>8</td>
</tr>
<tr>
<td>Scientific enquiry</td>
<td>8</td>
</tr>
<tr>
<td>Biology</td>
<td>8</td>
</tr>
<tr>
<td>Chemistry</td>
<td>9</td>
</tr>
<tr>
<td>Physics</td>
<td>9</td>
</tr>
<tr>
<td>Stage 9</td>
<td>11</td>
</tr>
<tr>
<td>Biology</td>
<td>12</td>
</tr>
<tr>
<td>Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>Physics</td>
<td>13</td>
</tr>
</tbody>
</table>
Introduction

Welcome to the Cambridge Lower Secondary Science Curriculum Framework.

This framework provides a comprehensive set of progressive learning objectives for science. The objectives detail what the learner should know or what they should be able to do in science in each year of lower secondary education. They provide a structure for teaching and learning and a reference against which learners' ability and understanding can be checked.

The Cambridge Lower Secondary science curriculum is presented in four content areas: Scientific enquiry, Biology, Chemistry and Physics. Scientific enquiry is about considering ideas, evaluating evidence, planning investigative work and recording and analysing data. The Scientific enquiry objectives underpin Biology, Chemistry and Physics, which are focused on developing confidence and interest in scientific knowledge. Environmental awareness and some history of science are also incorporated. The Cambridge Lower Secondary Science Curriculum Framework continues the journey from the Cambridge Primary science framework and provides a solid foundation upon which the later stages of education can be built.

The Cambridge Curriculum is founded on the values of the University of Cambridge and best practice in schools. The curriculum is dedicated to developing learners who are confident, responsible, innovative and engaged. Each curriculum framework for English, mathematics and science is designed to engage learners in an active and creative learning journey.

Safety issues

An essential part of this programme is that learners develop skills in scientific enquiry. This includes the collection of primary data by experiment. Scientific experiments are engaging and provide opportunities for first hand exploration. However, they must, at all times, be conducted with the utmost respect for safety, specifically:

- It is the responsibility of the teacher in charge to adhere and conform to any national, regional and school regulation in place with respect to safety of scientific experimentation.
- It is the responsibility of the teacher in charge to make a risk assessment of the hazards involved with any particular class or individual when undertaking a scientific experiment that conforms to these regulations.

Cambridge International takes no responsibility for the management of safety for individual published experiments or for the management of safety for the undertaking of practical experiments in any given location. Cambridge International only endorses support material in relation to curriculum content and is not responsible for the safety of activities contained within it. The responsibility for the safety of all activities and experiments remains with the school.
Animal welfare and the use of animals in science

Throughout biology, learners study a variety of living things, including animals. As part of the University of Cambridge, Cambridge International shares the approach that good animal welfare and good science go hand-in-hand.

Learners should have opportunities to observe animals in their natural environment. This should be done responsibly and not in a way that could cause distress or harm to the animals or damage to the environment.

If living animals are brought into schools then the teacher must ensure that any national, regional and school regulations are followed regarding animal welfare. In all circumstances, the teacher responsible must ensure all animals have:

- a suitable environment, including being housed with, or apart from, other animals (as required for the species)
- a suitable diet
- the opportunity to exhibit normal behaviour patterns
- protection from pain, injury, suffering and disease.

There is no requirement for learners to participate in, or observe, animal dissections for Cambridge Lower Secondary Science. Although dissection can provide a valuable learning opportunity, some learners decide not to continue studying biology because they dislike animal dissection. Several alternatives are available to dissection (such as models and diagrams) which teachers should consider during their planning.

If a teacher decides to include animal dissection then animal material should be obtained from premises licensed to sell them for human or pet consumption, or from a reputable biological supplier. This approach helps to ensure animal welfare standards and also decreases the risk from pathogens being present in the material. No teacher or learner should kill animals for dissection.

When used, fresh material should be kept at 5 °C or below until just before use. Frozen material should be defrosted slowly (at 5 °C) without direct heat. All fresh or defrosted material should be used within 2 days. Preserved animal materials should only be handled when wearing gloves and in a well-ventilated room.

The responsibility for ensuring the welfare of all animals studied in science remains with the school.

Policy framework

It is expected that schools will have their own sex education policy set within their national legislative framework and drawn up in consultation with parents. We are aware that these policies will be distinct and varied due to the diversity in tradition and culture enjoyed over our global network of schools. For this reason, the focus of the Lower Secondary curriculum is the factual and preparative aspects of sex education. It does not address attitudes and values or personal and social skills as we expect each school to make a judgement on how these aspects of sex education are addressed within their wider curriculum framework/obligations.
Note on codes

Each learning objective has a unique curriculum framework code, e.g. 7Ep1. These codes appear in the Cambridge Teacher Guide, schemes of work and other published resources. Each sub-strand has a green reporting code, e.g. Ep. These codes appear in Checkpoint feedback reports. Please note that the Ep reporting code covers both the Ideas and evidence and the Plan investigative work sub-strands. The Eo reporting code covers the Obtain and present evidence and Ec reporting strand covers the Consider evidence and approach sub-strands.
Stage 7

Scientific enquiry

Ep Ideas and evidence
- 7Ep1 Be able to talk about the importance of questions, evidence and explanations
- 7Ep2 Make predictions and review them against evidence

Ep Plan investigative work
- 7Ep3 Suggest ideas that may be tested
- 7Ep4 Outline plans to carry out investigations, considering the variables to control, change or observe
- 7Ep5 Make predictions referring to previous scientific knowledge and understanding
- 7Ep6 Identify appropriate evidence to collect and suitable methods of collection
- 7Ep7 Choose appropriate apparatus and use it correctly

Eo Obtain and present evidence
- 7Eo1 Make careful observations including measurements
- 7Eo2 Present results in the form of tables, bar charts and line graphs
- 7Eo3 Use information from secondary sources

Ec Consider evidence and approach
- 7Ec1 Make conclusions from collected data, including those presented in a graph, chart or spreadsheet
- 7Ec2 Recognise results and observations that do not fit into a pattern, including those presented in a graph, chart or spreadsheet
- 7Ec3 Consider explanations for predictions using scientific knowledge and understanding and communicate these
- 7Ec4 Present conclusions using different methods

Biology

Bp Plants
- 7Bp1 Recognise the positions, and know the functions of the major organs of flowering plants, e.g. root, stem, leaf

Bh Humans as organisms
- 7Bh1 Explore the role of the skeleton and joints and the principle of antagonistic muscles
- 7Bh2 Recognise the positions and know the functions of the major organ systems of the human body. Secondary sources can be used
- 7Bh3 Research the work of scientists studying the human body
**Bc  Cells and organisms**
- **7Bc1** Identify the seven characteristics of living things and relate these to a wide range of organisms in the local and wider environment
- **7Bc2** Know about the role of micro-organisms in the breakdown of organic matter, food production and disease, including the work of Louis Pasteur
- **7Bc3** Identify the structures present in plant and animal cells as seen with a simple light microscope and/or a computer microscope
- **7Bc4** Compare the structure of plant and animal cells
- **7Bc5** Relate the structure of some common cells to their functions. Secondary sources can be used
- **7Bc6** Understand that cells can be grouped together to form tissues, organs and organisms

**Be  Living things in their environment**
- **7Be1** Describe how organisms are adapted to their habitat, drawing on locally occurring examples. Secondary sources can be used
- **7Be2** Draw and model simple food chains
- **7Be3** Discuss positive and negative influence of humans on the environment, e.g. the effect on food chains, pollution and ozone depletion
- **7Be4** Discuss a range of energy sources and distinguish between renewable and non-renewable resources. Secondary sources can be used

**Bv  Variation and classification**
- **7Bv1** Understand what is meant by a species
- **7Bv2** Investigate variation within a species. Secondary sources can be used
- **7Bv3** Classify animals and plants into major groups, using some locally occurring examples

**Chemistry**

**Cs  States of matter**
- **7Cs1** Show in outline how the particle theory of matter can be used to explain the properties of solids, liquids and gases, including changes of state

**Cp  Material properties**
- **7Cp1** Distinguish between metals and non-metals
- **7Cp2** Describe everyday materials and their physical properties

**Cc  Material changes**
- **7Cc1** Use a pH scale.
- **7Cc2** Understand neutralisation and some of its applications
- **7Cc3** Use indicators to distinguish acid and alkaline solutions

**Ce  The Earth**
- **7Ce1** Observe and classify different types of rocks and soils
- **7Ce2** Research simple models of the internal structure of the Earth
- **7Ce3** Examine fossils and research the fossil record
- **7Ce4** Discuss the fossil record as a guide to estimating the age of the Earth
- **7Ce5** Learn about most recent estimates of the age of the Earth
Physics

**Pf** Forces and motion
- **7Pf1** Describe the effects of forces on motion, including friction and air resistance
- **7Pf2** Describe the effect of gravity on objects. Secondary sources can be used

**Pe** Energy
- **7Pe1** Understand that energy cannot be created or destroyed and that energy is always conserved
- **7Pe2** Recognise different energy types and energy transfers

**Pb** The Earth and beyond
- **7Pb1** Describe how the movement of the Earth causes the apparent daily and annual movement of the sun and the stars
- **7Pb2** Describe the relative position and movement of the planets and the sun in the solar system
- **7Pb3** Discuss the impact of the ideas and discoveries of Copernicus, Galileo and more recent scientists
- **7Pb4** Understand that the sun and other stars are sources of light and that planets and other bodies are seen by reflected light
Stage 8

Scientific enquiry

Ep Ideas and evidence
- **8Ep1** Discuss the importance of developing empirical questions which can be investigated, collecting evidence, developing explanations and using creative thinking
- **8Ep2** Test predictions with reference to evidence gained

Ep Plan investigative work
- **8Ep3** Select ideas and turn them into a form that can be tested
- **8Ep4** Plan investigations to test ideas
- **8Ep5** Identify important variables; choose which variables to change, control and measure
- **8Ep6** Make predictions using scientific knowledge and understanding

Eo Obtain and present evidence
- **8Eo1** Take appropriately accurate measurements
- **8Eo2** Use a range of equipment correctly
- **8Eo3** Discuss and control risks to themselves and others
- **8Eo4** Present results as appropriate in tables and graphs

Ec Consider evidence and approach
- **8Ec1** Make simple calculations
- **8Ec2** Identify trends and patterns in results (correlations)
- **8Ec3** Compare results with predictions
- **8Ec4** Identify anomalous results and suggest improvements to investigations
- **8Ec5** Interpret data from secondary sources
- **8Ec6** Discuss explanations for results using scientific knowledge and understanding. Communicate these clearly to others
- **8Ec7** Present conclusions to others in appropriate ways

Biology

Bp Plants
- **8Bp1** Explore how plants need carbon dioxide, water and light for photosynthesis in order to make biomass and oxygen
- **8Bp2** Describe the absorption and transport of water and mineral salts in flowering plants
Bh  Humans as organisms

- **8Bh1** Identify the constituents of a balanced diet and the functions of various nutrients. Secondary sources can be used
- **8Bh2** Understand the effects of nutritional deficiencies
- **8Bh3** Recognise the organs of the alimentary canal and know their functions. Secondary sources can be used
- **8Bh4** Understand the function of enzymes as biological catalysts in breaking down food to simple chemicals
- **8Bh5** Recognise and model the basic components of the circulatory system and know their functions
- **8Bh6** Understand the relationship between diet and fitness
- **8Bh7** Discuss how conception, growth, development, behaviour and health can be affected by diet, drugs and disease
- **8Bh8** Recognise the basic components of the respiratory system and know their functions
- **8Bh9** Define and describe aerobic respiration, and use the word equation
- **8Bh10** Explain gaseous exchange
- **8Bh11** Describe the effects of smoking. Secondary sources can be used
- **8Bh12** Discuss the physical and emotional changes that take place during adolescence
- **8Bh13** Describe the human reproductive system, including the menstrual cycle, fertilisation and foetal development

Chemistry

Cs  States of matter

- **8Cs1** Show how the particle theory of matter can be used to explain the properties of solids, liquids and gases, including changes of state, gas pressure and diffusion

Cp  Material properties

- **8Cp1** Describe and explain the differences between metals and non-metals
- **8Cp2** Give chemical symbols for the first twenty elements of the Periodic Table
- **8Cp3** Understand that elements are made of atoms
- **8Cp4** Explain the idea of compounds
- **8Cp5** Name some common compounds including oxides, hydroxides, chlorides, sulfates and carbonates
- **8Cp6** Distinguish between elements, compounds and mixtures

Cc  Material changes

- **8Cc1** Use a word equation to describe a common reaction. Secondary sources can be used
- **8Cc2** Describe chemical reactions which are not useful, e.g. rusting

Physics

Pf  Forces and motion

- **8Pf1** Calculate average speeds, including through the use of timing gates
- **8Pf2** Interpret simple distance/time graphs
Ps  Sound
- 8Ps1 Explain the properties of sound in terms of movement of air particles
- 8Ps2 Recognise the link between loudness and amplitude, pitch and frequency, using an oscilloscope

Pl  Light
- 8Pl1 Use light travelling in a straight line to explain the formation of shadows and other phenomena
- 8Pl2 Describe how non-luminous objects are seen
- 8Pl3 Describe reflection at a plane surface and use the law of reflection
- 8Pl4 Investigate refraction at the boundary between air and glass or air and water
- 8Pl5 Explain the dispersion of white light
- 8Pl6 Explain colour addition and subtraction, and the absorption and reflection of coloured light

Pm  Magnetism
- 8Pm1 Describe the properties of magnets
- 8Pm2 Recognise and reproduce the magnetic field pattern of a bar magnet
- 8Pm3 Construct and use an electromagnet
Stage 9

Scientific enquiry

Ep  Ideas and evidence
- 9Ep1 Discuss and explain the importance of questions, evidence and explanations, using historical and contemporary examples
- 9Ep2 Test explanations by using them to make predictions and then evaluate these against evidence
- 9Ep3 Discuss the way that scientists work today and how they worked in the past, including reference to experimentation, evidence and creative thought

Ep  Plan investigative work
- 9Ep4 Select ideas and produce plans for testing based on previous knowledge, understanding and research
- 9Ep5 Suggest and use preliminary work to decide how to carry out an investigation
- 9Ep6 Decide whether to use evidence from first hand experience or secondary sources
- 9Ep7 Decide which measurements and observations are necessary and what equipment to use
- 9Ep8 Decide which apparatus to use and assess any hazards in the laboratory, field or workplace
- 9Ep9 Use appropriate sampling techniques where required

Eo  Obtain and present evidence
- 9Eo1 Make sufficient observations and measurements to reduce error and make results more reliable
- 9Eo2 Use a range of materials and equipment and control risks
- 9Eo3 Make observations and measurements
- 9Eo4 Choose the best way to present results

Ec  Consider evidence and approach
- 9Ec1 Describe patterns (correlations) seen in results
- 9Ec2 Interpret results using scientific knowledge and understanding
- 9Ec3 Look critically at sources of secondary data
- 9Ec4 Draw conclusions
- 9Ec5 Evaluate the methods used and refine for further investigations
- 9Ec6 Compare results and methods used by others
- 9Ec7 Present conclusions and evaluation of working methods in different ways
- 9Ec8 Explain results using scientific knowledge and understanding. Communicate this clearly to others
### Biology

**Bp Plants**
- **9Bp1** Define and describe photosynthesis, and use the word equation
- **9Bp2** Understand the importance of water and mineral salts to plant growth
- **9Bp3** Understand sexual reproduction in flowering plants, including pollination, fertilisation, seed formation and dispersal

**Be Living things in their environment**
- **9Be1** Explain the ways in which living things are adapted to their habitats. Secondary sources can be used
- **9Be2** Research the work of scientists studying the natural world. Secondary sources can be used
- **9Be3** Explain and model food chains, food webs and energy flow
- **9Be4** Explain the role of decomposers
- **9Be5** Describe factors affecting the size of populations
- **9Be6** Describe and investigate some effects of human influences on the environment

**Bv Variation and classification**
- **9Bv1** Use and construct keys to identify plants and animals
- **9Bv2** Understand that organisms inherit characteristics from their parents through genetic material that is carried in cell nuclei
- **9Bv3** Describe how selective breeding can lead to new varieties
- **9Bv4** Discuss the work of Darwin in developing the scientific theory of natural selection

### Chemistry

**Cp Material properties**
- **9Cp1** Describe the structure of an atom and learn about the methods and discoveries of Rutherford
- **9Cp2** Compare the structures of the first twenty elements of the Periodic Table
- **9Cp3** Describe trends in groups and periods
- **9Cp4** Talk about the contribution of scientists. Secondary sources can be used

**Cc Material changes**
- **9Cc1** Explore and explain the idea of endothermic processes, e.g. melting of ice, and exothermic reactions, e.g. burning, oxidation
- **9Cc2** Describe the reactivity of metals with oxygen, water and dilute acids
- **9Cc3** Explore and understand the reactivity series
- **9Cc4** Give examples of displacement reactions
- **9Cc5** Explain how to prepare some common salts by the reactions of metals and metal carbonates and be able to write word equations for these reactions
- **9Cc6** Give an explanation of the effects of concentration, particle size, temperature and catalysts on the rate of a reaction
Physics

Pf Forces and motion
- 9Pf1 Explain that pressure is caused by the action of a force on an area
- 9Pf2 Determine densities of solids, liquids and gases
- 9Pf3 Explain pressures in gases and liquids (qualitative only)
- 9Pf4 Know that forces can cause objects to turn on a pivot and understand the principle of moments

Pm Electricity
- 9Pm1 Describe electrostatics and the concept of charge, including digital sensors
- 9Pm2 Interpret and draw simple parallel circuits
- 9Pm3 Model and explain how common types of components, including cells (batteries), affect current
- 9Pm4 Explain how current divides in parallel circuits
- 9Pm5 Measure current using ammeters and voltage using voltmeters, including digital meters

Pe Energy
- 9Pe1 Use knowledge of energy sources including fossil fuels and renewable energy resources to consider the world’s energy needs, including research from secondary sources
- 9Pe2 Identify and explain the thermal (heat) energy transfer processes of conduction, convection and radiation
- 9Pe3 Explain cooling by evaporation